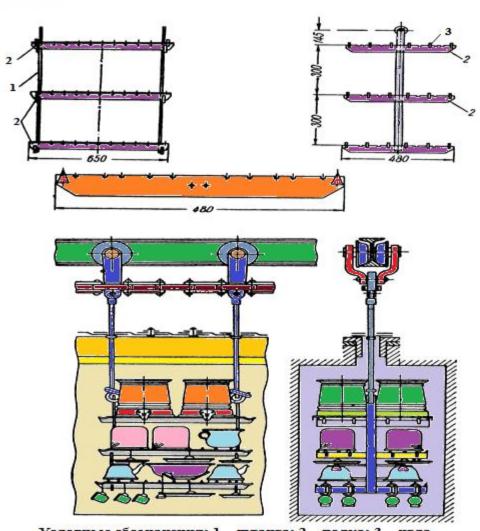
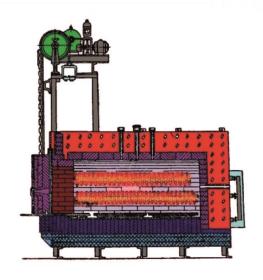
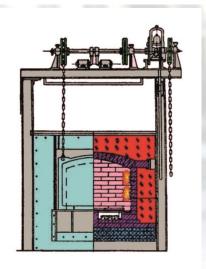


Международный форум «Стекло и Современные технологии-XXI»


Особенности технологии жаростойких ситалловых покрытий с применением техногенного сырья


Лазарева Е. А., к.т.н., доцент, **Минько Н.И.,** д.т.н., профессор, Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова, Белгородский государственный технологический университет им. В.Г. Шухова



Применение нихромовых сплавов в промышленных печах

Условные обозначения: 1 - штанга; 2 - полка; 3 - нгла.

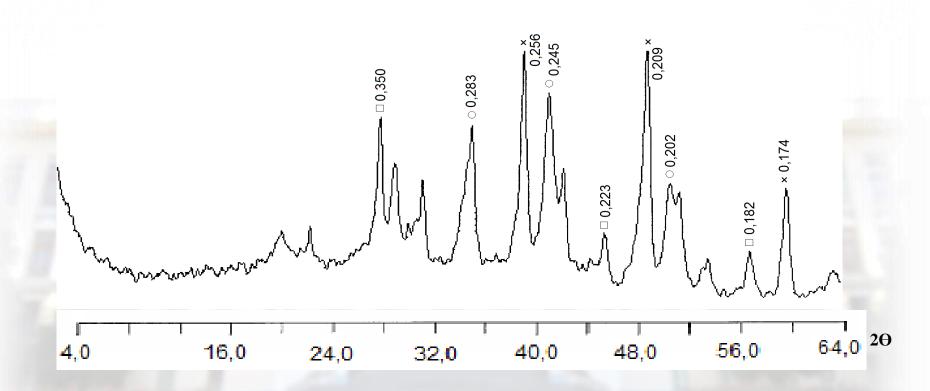
Жаростойкие эмалевые покрытия на основе химически чистого сырья для деталей обжигового инструмента

Предназначены для защиты хромникелевых сплавов от высокотемпературной газовой коррозии. Температура обжига покрытия 1120-1180°C.

Может быть рекомендовано для защиты деталей обжигового инструмента, в частности конвейера эмалировочных печей.

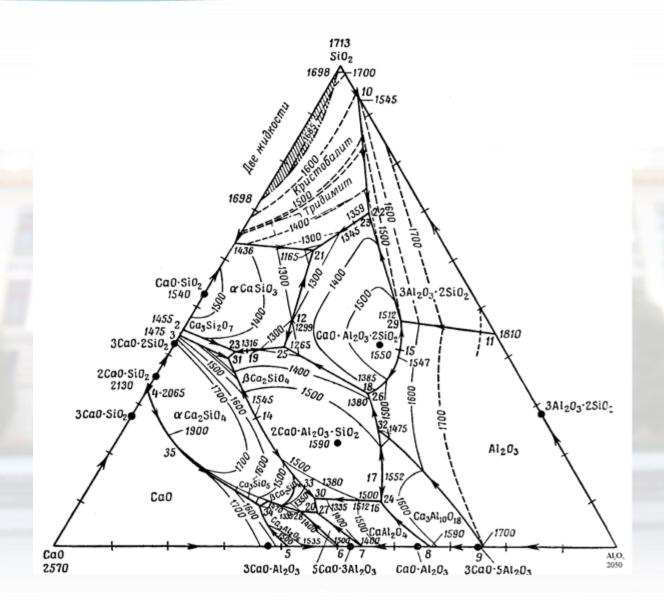
Отличается высокой термостойкостью и повышенной прочностью сцепления. Индекс сцепления при вытяжке на глубину 7мм составляет 96%.

Покрытие, нанесенное на «крестовины» и другие детали люлечного конвейера эмалеобжиговых печей, прошло промышленные испытания в условиях работы электропечи эмальцеха Ростовского завода «Рубин» и сохранило хорошее качество после 7500 теплосмен.


Цель работы - разработка состава и технологии стеклокристаллических жаростойких покрытий с применением вторичного продукта алюминиевого производства для высокотемпературной защиты нихромовых сталей и сплавов от коррозии. **Задачи:**

- 1. Разработать состав и технологические параметры получения стекломатрицы жаростойкого стеклокристаллического покрытия с применением вторичного продукта алюминиевого производства на основе модифицированной системы MgO-Al2O3- SiO2 TiO2;
- 2. Изучить влияние применения вторичного продукта алюминиевого производства на температурный интервал варки стекломатриц покрытий и их свойства;
- 3. Выявить влияние режима термообработки синтезированной стекломатрицы на её фазовый состав, структуру и свойства;
- 4. Разработать состав жаростойкого стеклокристаллического покрытия с использованием вторичного продукта алюминиевого производства и исследовать его физико-химические и эксплуатационно-технические свойства;
- 5. Изучить влияние вторичного продукта алюминиевого производства на температурный интервал обжига покрытий;
- 6. Исследовать фазовый состав и структуру композиции «нихром-покрытие», установить зависимость прочности сцепления покрытий от структуры и фазового состава образующегося при обжиге контактного слоя;
- 7. Разработать научно-практические рекомендации по составу и технологии стеклокристаллических жаростойких покрытий с использованием вторичного продукта алюминиевого производства для высокотемпературной защиты нихромовых сталей и сплавов.

Рентгенофазовый анализ вторичного продукта алюминиевого производства



□ - CaFe2O4 (шпинель)

Тройная система SiO2 – Al2O3 - CaO

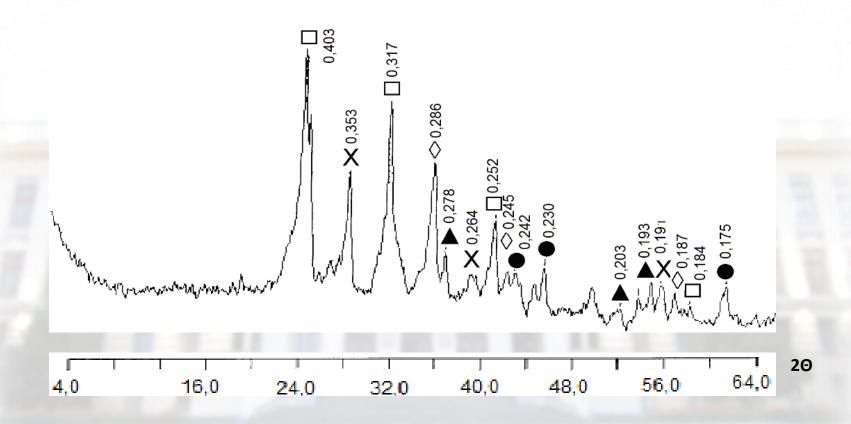
Кристаллизационная способность стёкол

№ стекла	Температуры кристаллизации стекол, °C							
4	600700 (620)	600700 (640)	600700 (690)	700800 (790)				
7	300400 (332)			700800 (780)				
12	500600 (570)	600700 (650)	700800 (713)	700800 (753)	700800 (777)			
13	300400	400500	600700	700				
	(330)	(440)	(605)	(736				

Условные обозначения:

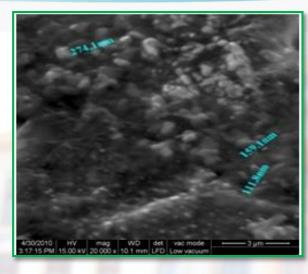
- отсутствие признаков кристаллизации;
 - распространение кристаллизации по всему объему стекла, степень закристаллизованности до 50%;
- мелкодисперсная объемная кристаллизация, степень закристаллизованности не менео 50-60%;
 - условно-полная мелкодисперсная объемная кристаллизация, степень закристаллизованности 60-90%.

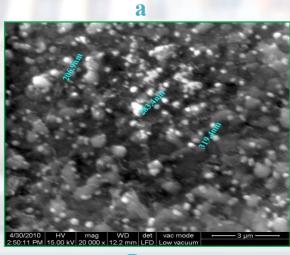
Кристаллизационная способность стекломатриц

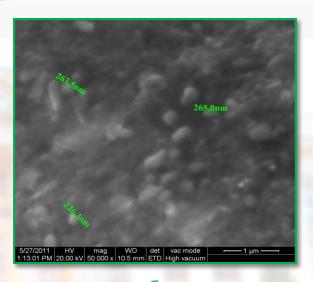


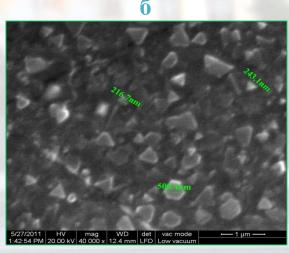
500600°C	600700°C	700800°C	800900°C	9001000°C				
		Стекломатрица №4						
	Стекломатрица №6							

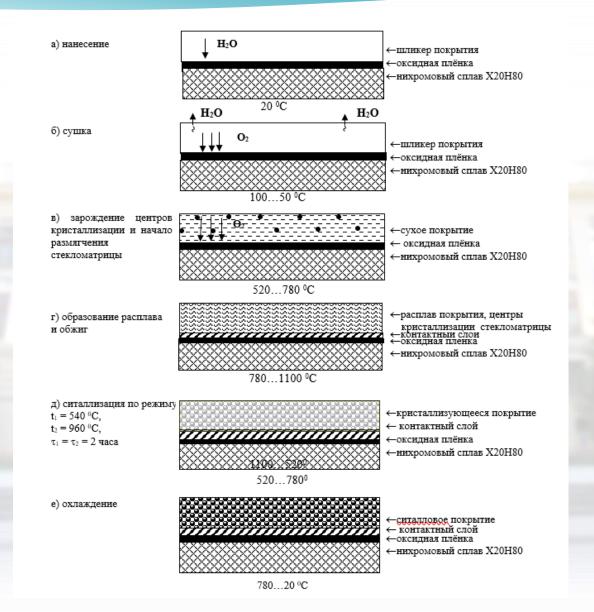
РФА стекломатрицы с использованием вторичного продукта алюминиевого производства:




 \Diamond - CaAl $_2$ Si $_2$ O $_8$ (анортит); X — LiSiAlO $_4$ (β -эвкриптит); • - CaTiO $_3$ (перовскит); \Diamond - MgTi $_2$ O $_5$; \blacktriangle - α -Ca $_3$ Si $_3$ O $_9$ (псевдоволластонит).

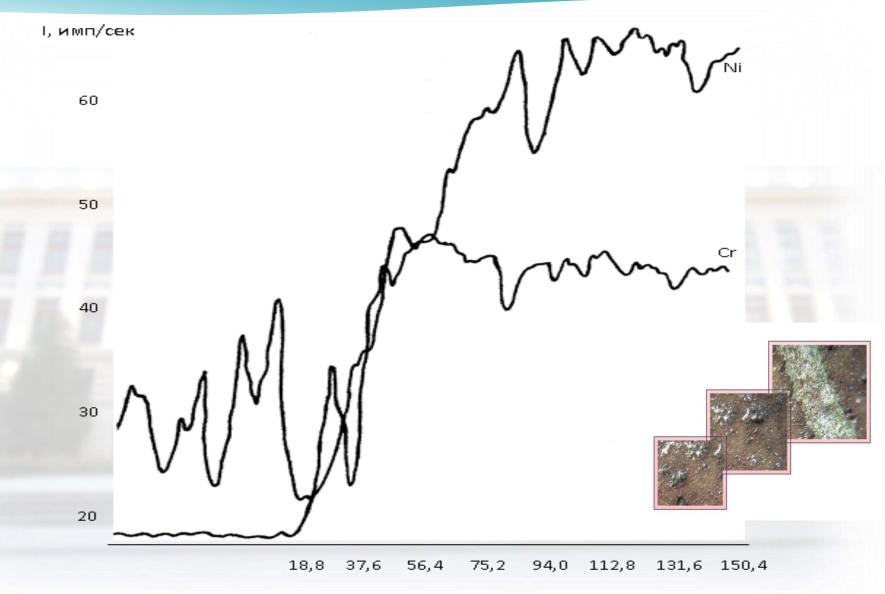


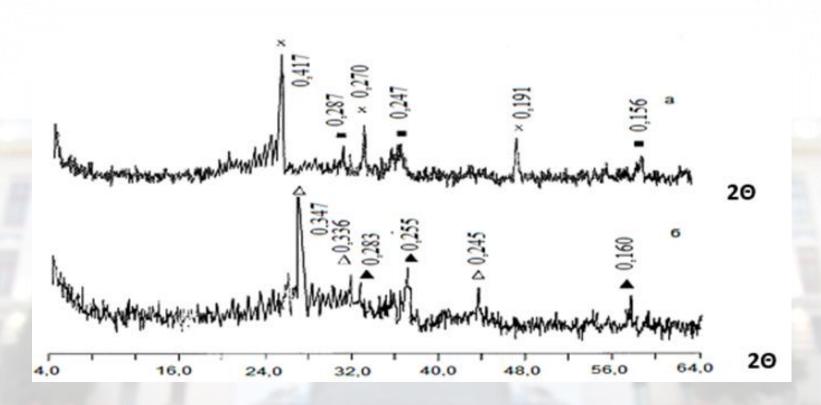

Электронные микрофотографии разработанных ситаллов

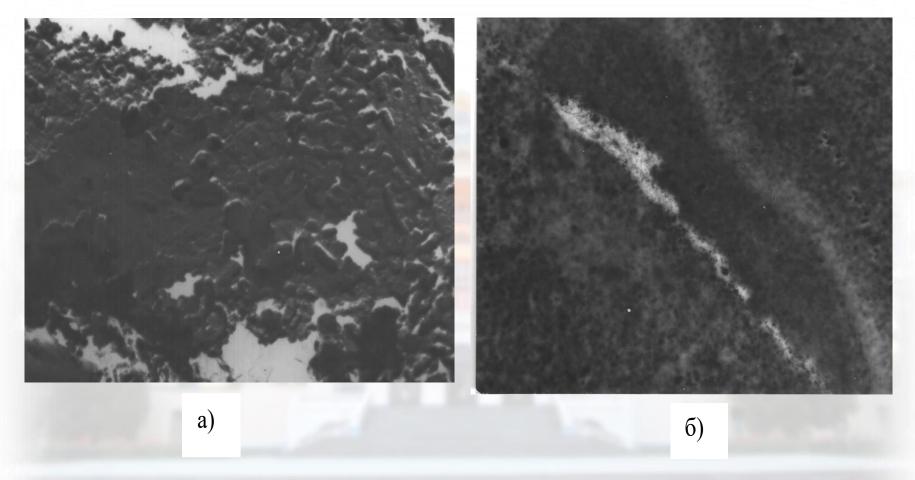


В a- образец 4 ($t_1=620^{0}$ C; $t_2=790^{0}$ C; $\tau_1=\tau_2=1$ ч); 6- образец 7 ($t_1=540^{0}$ C; $t_2=780^{0}$ C; $\tau_1=\tau_2=1$ ч); 6- образец 12 ($t_1=570^{0}$ C; $t_2=753^{0}$ C; $t_1=\tau_2=1$ ч); 6- образец 13 ($t_1=450^{0}$ C; $t_2=740^{0}$ C; $t_1=\tau_2=1$ ч)

Схема формирования жаростойких ситалловых покрытий с использованием вторичного продукта алюминиевого производства на нихроме




РАСПРЕДЕЛЕНИЕ Ni И Cr В КОНТАКТНОМ СЛОЕ



 $N_{2}1 - (a); N_{2}2 - (6)$

СТРУКТУРА КОМПОЗИЦИИ НИХРОМ-ПОКРЫТИЕ

Условные обозначения: а) ситалловое покрытие; б) контактный слой нихром-покрытие. (× 10000)

Изменение массы образцов в зависимости от времени термической обработки



	Изменение массы Δ m · 10³ (кг/м²) за время (ч) покрытия №1 и N 2								№1И	
Наименова ние образцов	5	1	15	20	25	30	35	40	45	50
	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3
Контрольн ый металл X20H80	2,0	2 , 3	2,7	3,5	3,6	3,65	3,7	3,7	3,7	3,71
Х20Н8о с нетермооб работанны м покрытием	1,5	2 , 1	2,5	2,5	2,5	2,6	2,6	2,6	2,8	2,8
	1,8	2 , 3	2,7	2,8	2,8	2,9	² , 95	2,9 5	2, 98	2 , 9
Х20Н8о с термообра ботанным покрытием	0,2	0 , 4	1,4	1,4	1,5	1,5	1,5	1,6	1,6	1,6
	0,4	o , 7	1,6	1,7	1,7	1,7	1,8	1,8	1,8	1,8

СХЕМА ОПЫТНО-ПРОМЫШЛЕННЫХ ИСПЫТАНИЙ ПОКРЫТИЯ

Образцы покрытий и стекломатериалы на основе техногенного сырья

БЛАГОДАРЮ ЗА ВНИМАНИЕ!