
Доклад для Международного Форума «Стекло и Современные Технологии-XXI» 11 декабря 2018 года, г. Москва

Влияние химических свойств влагопоглотителей на алюминиевую дистанционную рамку стеклопакета

ВЛАГОПОГЛОТИТЕЛИ

для дистанционных рамок стеклопакетов

4А Молекулярное сито

ЗА Молекулярное сито

Хемсорбенты на основе СаО

Хемсорбенты на основе CaCl₂

Стеклопакет – это замкнутая статическая адсорбционная система

Элементный состав

Элемент	Усл.	Интенсивн ость	Весовой %	Весовой %	Атомный%
	Конц.	Попр.		Сигма	
С	1.87	0.5280	3.47	0.40	6.38
0	17.93	0.3904	45.10	0.30	62.26
Na	0.32	0.6876	0.45	0.04	0.44
Mg	0.53	0.6665	0.78	0.03	0.70
Al	2.09	0.7809	2.63	0.04	2.15
Si	7.54	0.8541	8.67	0.07	6.82
S	0.29	0.9046	0.31	0.02	0.22
K	0.56	1.1455	0.48	0.02	0.27
Ca	37.84	1.0170	36.53	0.22	20.13
Ti	0.11	0.7497	0.15	0.03	0.07
Fe	1.10	0.8095	1.33	0.05	0.53
Cu	0.08	0.7935	0.10	0.05	0.03

CaO, Ca(OH)₂, аттапульгит

Метод исследования – электронный микроскоп с энергодисперсионной приставкой

Оксид кальция (окись кальция, негашёная известь)
— белое кристаллическое вещество

Применение

В настоящее время в основном используются в производстве строительных материалов, высокоглиноземистого цемента, силикатного кирпича и тд.

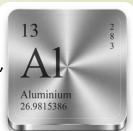
До второй половины XX века известь широко использовали в качестве строительной побелки — прокаленный мел или известняк (оксид кальция) при смешивании с водой образует яркобелую гашеную известь (Ca(OH)2), обладающую хорошими адгезионными свойствами к различным поверхностям. Далее известь медленно поглощает из воздуха углекислый газ, покрываясь коркой карбоната кальция. В настоящее время известковый цемент при строительстве жилых домов практически не применяется в виду значительной гигроскопичности (склонности поддерживать высокую влажность, провоцирующую рост плесени), уступив место более эффективным материалам.

В лабораторной практике оксид кальция используется как дешевый и эффективный агент для осущения растворителей и жидких веществ.

В пищевой промышленности зарегистрирован в качестве пищевой добавки Е-529.

В промышленности водный раствор используют в одном из способов удаления диоксида серы из дымовых газов. В результате реакции гашеной извести Са(ОН)2 и диоксида серы получается осадок сульфита кальция CaSO3. В настоящее время вытеснен современными абсорберами на основе четвертичных аммонийных соединений, способных обратимо связывать SO2 и CO2.

Использовался в «саморазогревающейся» посуде. Оксид кальция, помещенный между двух стенок емкости, при прокалывании капсулы с водой реагирует с ней с выделением тепла.


АЛЮМИНИЙ

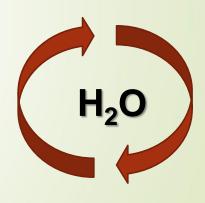
Алюми́ний (AI, лат. aluminium) — элемент 13-й группы периодической таблицы химических элементов (по устаревшей классификации — элемент главной подгруппы III группы), третьего периода, с атомным номером 13. Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий — лёгкий парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло-и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия

Коррозия алюминия в щелочах

Щелочи легко растворяют защитную оксидную пленку на поверхности алюминия, он начинает реагировать с водой, в результате чего металл растворяется с выделением водорода (коррозия алюминия с водородной деполяризацией).

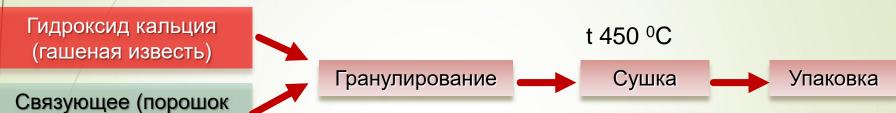
 $CaO+H_2O=Ca(OH)_2$


Гидрокси́д ка́льция (Са(ОН)₂, гашёная (или едкая) известь) — химическое вещество, сильное основание. Представляет собой порошок белого цвета, плохо растворимый в воде

$$Al_2O_3+3Ca(OH)_2+H_2O=Ca[Al(OH)_4]_2$$

$$2AI + 6H_2O = 2AI(OH)_3 + 3H_2\uparrow$$

$$2AI + Ca(OH)_2 + 4H_2O = Ca[AI(OH)_4]_2 + H_2\uparrow$$


$$CO_2+Ca(OH)_2=CaCO_3\downarrow+H_2O$$

Алюминат кальция $Ca[Al(OH)_4]_2$

$$Ca(OH)_2 \xrightarrow{t} CaO+H_2O$$

связующее (порошок атапульгитовой глины)

Степень осушки

Температура по точке росы минус 30°C

Влагоемкость 12%

Низкая мехпрочность

Высокотоксичное вещество КЛАСС ОПАСНОСТИ 2

