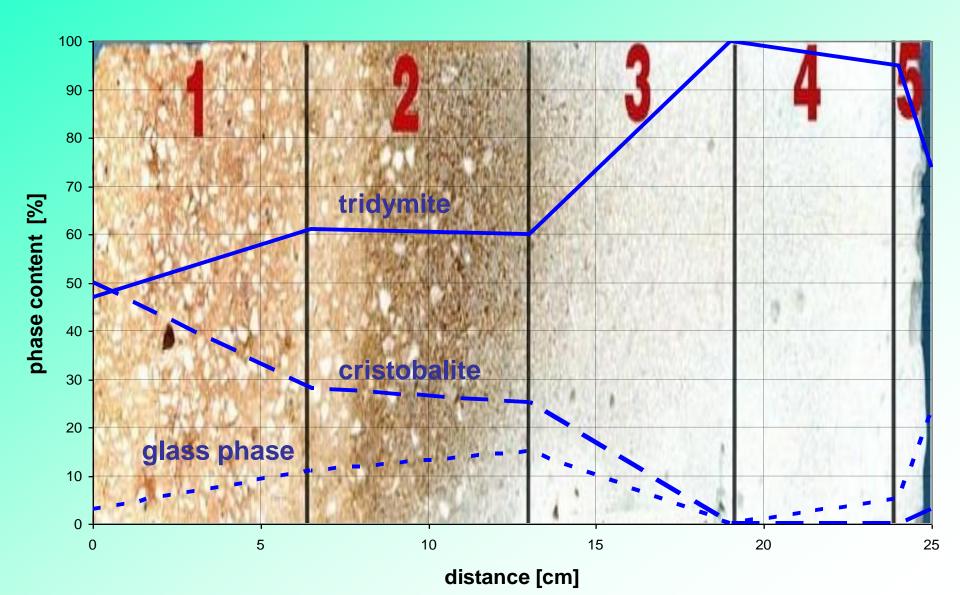


Динасовые огнеупоры для стекольной промышлености - настоящие и будущее

Станислав Дворак П-Д Рефракторис , Чехия

<u>Введение</u>

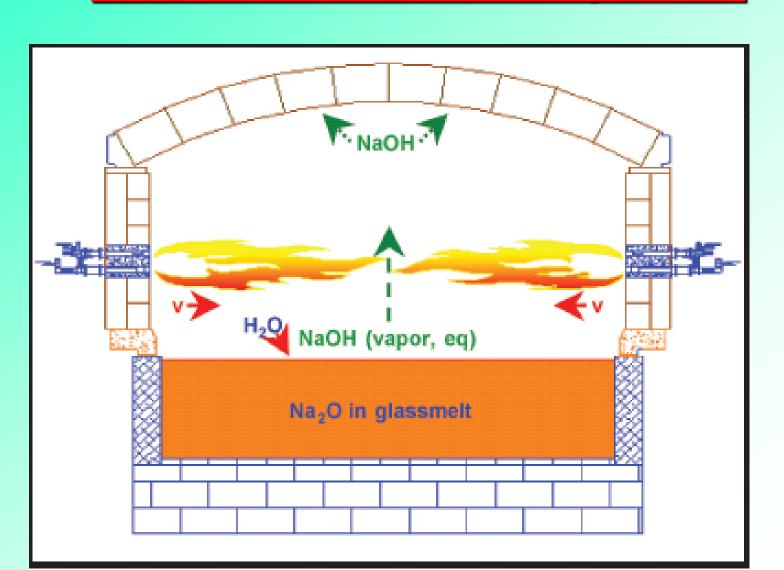
- успешное применение динасовых огнеупоров при изготовлении стекла с достижением более высокого качества производства в связи с использованием повышенных рабочих температур
- динас с максимальным классом трансформирования кварца в кристобалит и тридимит, соразмерным обратимым тепловым расширением, минимальным добавочным расширением и минимальной ползучестью при нагрузке в условиях высоких температур
- стабильность этих параметров и стабильность других физико-химических характеристик продукции, являются обязательным требованием



Стекловаренные печи и динасовые огнеупоры

- 1) в процессе работы печи происходят изменения химического и минерального состава динаса, кварцит трансформируется либо в кристоболит, либо в тридимит
- 2) слой кристоболита образуется на горячей поверхности динасового кирпича
- 3) щелочные компоненты из атмосферы печи проникают в динас, образуя фазы стекла с низкой точкой плавления и образуется стеклофаза, которая формирует барьер, снижающий скорость диффузии
- 4) стеклофаза частично стекает вниз

Коррозия динаса



Стекловаренные печи и динасовые огнеупоры

- 1) в процессе работы печи происходят изменения химического и минерального состава динаса, кварцит трансформируется либо в кристоболит, либо в тридимит
- 2) слой кристоболита образуется на горячей поверхности динасового кирпича
- 3) щелочные компоненты из атмосферы печи проникают в динас, образуя фазы стекла с низкой точкой плавления и образуется стеклофаза, которая формирует барьер, снижающий скорость диффузии
- 4) стеклофаза частично стекает вниз

Схема влиянии щелочной концентрации

Кислороднотопливое горение

- 1) образование большего объема водяного пара, который реагирует с углекислым натрием в стекломассе, образуя пары гидрооксида натрия-это причина 3-6 кратного превышения щелочной концентрации на поверхности огнеупора
- 2) срок службы верхней конструкции из динасовых материалов стал намного короче
- 3) высокая щелочная концентрация, высокая рабочая температура (1400-1650°С) и продолжительный срок эксплуатации кислороднотопливных печей, химическая и механическая устойчивость огнеупорных материалов становится все более и более важной

Разработка изделия

Практика показывает, что при применении гашеной извести в качестве минерализатора не может быть достигнута повышенная плотность и пониженная пористость динасого кирпича.

Вот почему проводились исследования других, более подходящих типов минерализаторов.

Эти соли, добавленные в материал, благоприятно воздействуют на материал, придают ему пластичность, а также обеспечивают его лучшее уплотнение при более низком уровне содержания воды в материале.

Лабораторные исследования

- 1) испытываемый динас входит в состав крышки тигеля.
- 2) парообразующие реагенты расплавляются в тигеле
- 3) испытываемый материал подвергается воздействию для испарения в течение 24 часов при температуре 1340°С,щелочные пары проникают в огнеупор
- 4) наблюдаются изменения в весе, размерах и внешнем виде, такие как пенетрация, растрескивание и отслаивание

Испытание на устойчивость к щелочным испарениям

Б

Сорт материала		Б	Ц	Д	Э
Падение	MM	4,4	5,9	4,1	5,5
Коррозия	MM	5,2	4,2	3,3	3,4
Коррозия всего					
	MM	9,6	10,1	7,4	8,9

<u>Различные типы динаса</u>

и их характеристики

СОРТ МАТЕРИАЛА		Α	Б	Ц	Д	Э
Свойства		Класически й динас	Высококач ественный стеклодина с	Динас сорта АСТМ А	Новый динас (oxy-fuel)	Динас (oxy-fuel)
SiO ₂	%	95,85	96,20	96,10	97,0	96,0
Al ₂ O ₃	%	0,60	0,45	0,28	0,3	0,5
Fe ₂ O ₃	%	0,80	0,50	0,45	0,6	0,6
CaO	%	2,90	2,50	2,90	1,3	2,3
NaO ₂ + K ₂ O	%	0,10	0,10	0,10	0,05	0,09
Flux Factor	%	0,80	0,65	0,48	0,4	0,70
Residual Quartz	%	1,0	0,6	0,7	0,3	>1
Tridymite	%	30	31	30	41	
Cristobalite	%	64	62	63	53	
Thermal expansion 1000°C	%	1,38	1,4	1,4	1,4	1,35
Apparent Porosity	%	23	21,5	20,5	15,0	18,5
Bulk density	kg/m³	1810	1820	1840	1890	1880
Cold crushing strength	MPa	30	40	40	80	50

Сфера применения

- 1) динас типа A и Д применялся в стекловаренных печах периодического действия с кислороднотопливым обогревом
- 2) температуры колеблются в диапазоне от температуры более 1450°С на поверхности, подвергающейся воздействию со стороны печи, до температуры, превышающей 200°С с наружной стороны
- 3) результаты показали, что стекание свода значительно уменьшается при применении динаса типа Д

<u>Различные типы динаса</u>

и их характеристики

СОРТ МАТЕРИАЛА		Α	Б	Ц	Д	Э
Свойства		Класически й динас	Высококач ественный стеклодина с	Динас сорта АСТМ А	Новый динас (oxy-fuel)	Динас (oxy-fuel)
SiO ₂	%	95,85	96,20	96,10	97,0	96,0
Al ₂ O ₃	%	0,60	0,45	0,28	0,3	0,5
Fe ₂ O ₃	%	0,80	0,50	0,45	0,6	0,6
CaO	%	2,90	2,50	2,90	1,3	2,3
NaO ₂ + K ₂ O	%	0,10	0,10	0,10	0,05	0,09
Flux Factor	%	0,80	0,65	0,48	0,4	0,70
Residual Quartz	%	1,0	0,6	0,7	0,3	>1
Tridymite	%	30	31	30	41	
Cristobalite	%	64	62	63	53	
Thermal expansion 1000°C	%	1,38	1,4	1,4	1,4	1,35
Apparent Porosity	%	23	21,5	20,5	15,0	18,5
Bulk density	kg/m³	1810	1820	1840	1890	1880
Cold crushing strength	MPa	30	40	40	80	50

<u>Правила эксплуатации печей</u>

Динасовый свод - табурет с тремя ножками

- 1) динасовый огнеупор и её характеристики
- 2) кладка динасовых сводовых кирпичей
- 3) нагрев печи,изоляции, эксплуатация печи,халатности при срочных ремонтных работах,техническое обслуживание

Ввывод и заключение

- 1) стекловаренные печи можно строить и эксплуатировать с применением динаса также с применением кислороднотопливого горения
- 2) динасовый свод представляет собой незначительную часть общих затрат на печь 5-10% от общих расходов
- 3) новый динас подвергает печному испытанию, предполагаемый срок службы увеличается в 3-4 раза
- 4) помимо лучшей устойчивости и проникновению щелочи огнеупор обладает улучшенными характеристиками по плотности,пористости и проницаемости
- 5) результаты обнаживающие, но ещё слишком рано говорить о том, что найдена альтернатива бакору

Динасовые огнеупоры для стекольной промышлености - настоящие и будущее

Спасибо за Ваше внимание

Станислав Дворак П-Д Рефракторис , Чехия