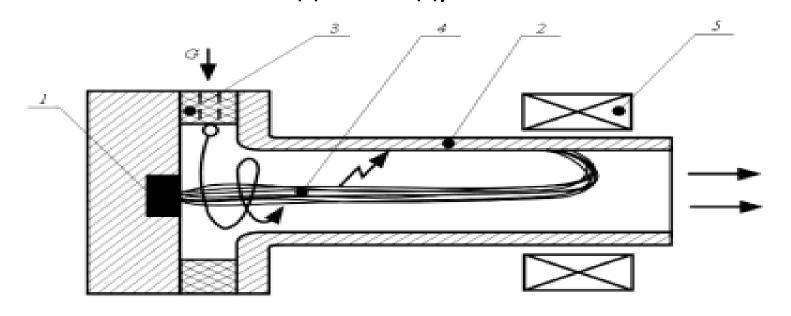
«Плазменные технологии в производстве стекла»

Академик РАЕ, д.т.н., профессор Бессмертный В.С.

Преимущества плазменных технологий

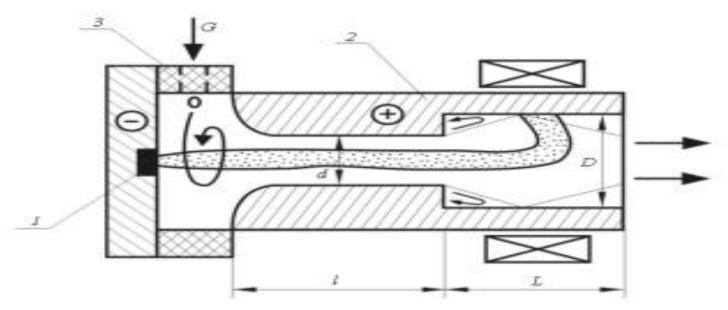
- 1- энергосбережение;
- 2- высокая производительность технологических процессов;
- 3- экологическая безопасность;
- 4- регулирование окислительно-восстановительных условий плазменного факела;
- 5- интенсификация процессов силикатообразования, накопление силикатного расплава и его гомогенизация


Возможность использования плазменного факела в технологии стекла

- 1 синтез тугоплавких стекол с t плавления, превышавшей 2000С;
- 2- получение стеклянных микрошариков и полых стеклянных микросфер;
- 3- получение стекловолокна и волоконной оптики;
- 4- синтез стекол из паровой фазы;
- 5- синтез стеклокристаллических материалов;
- 6- декорирование сортовой посуды;
- 7- матирование стеклоизделий;
- 8- металлизация стеклоизделий

Возможность использования плазменного факела в технологии стекла

- 9- термическая полировка стеклоизделий;
- 10- отрезка колпачка (при производстве сортовой посуды);
- 11- резка стекол;
- 12- глазурование керамических изделий;
- 13- синтез силикат-глыбы для производства жидкого стекла;
- 14- синтез гранулированного блочного пеностекла;
- 15- глазурование силикатного кирпича;
- 16- глазурование бетона и других композиционных материалов и т.д.


Схема плазмотрона с самоустанавливающейся длиной дуги

1-торцевой катод, 2- анод,

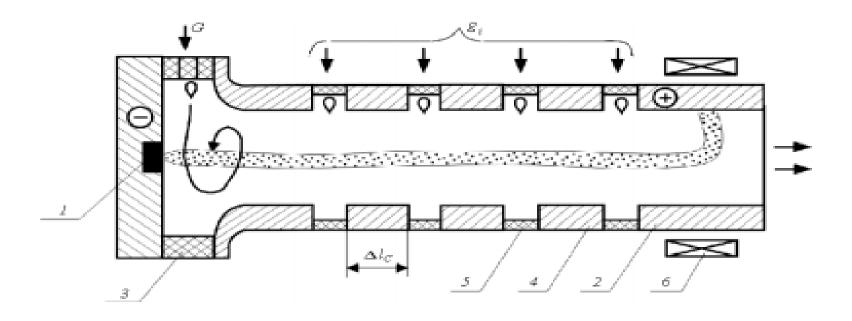

3- кольцо закрутки, 4- электрическая дуга, 5- соленоид

Схема плазмотрона с фиксацией средней длины дуги уступом

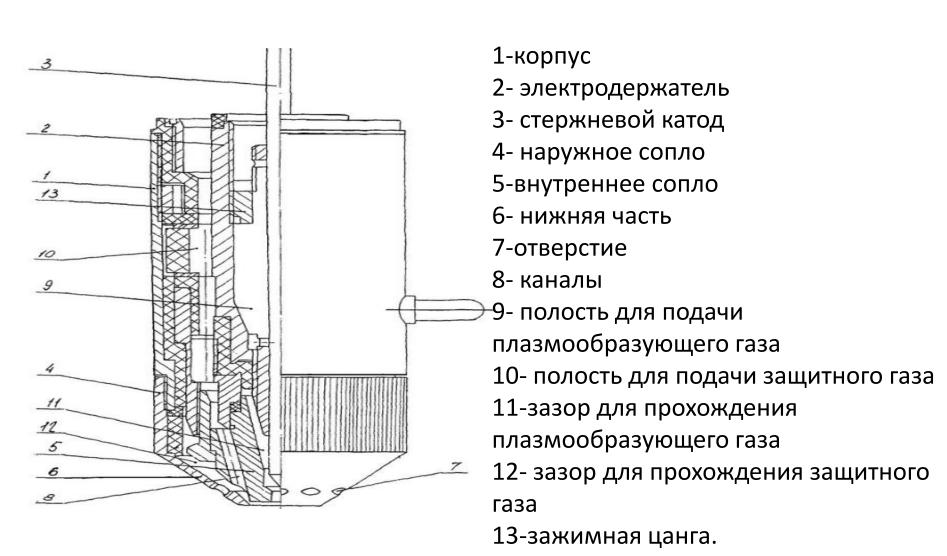
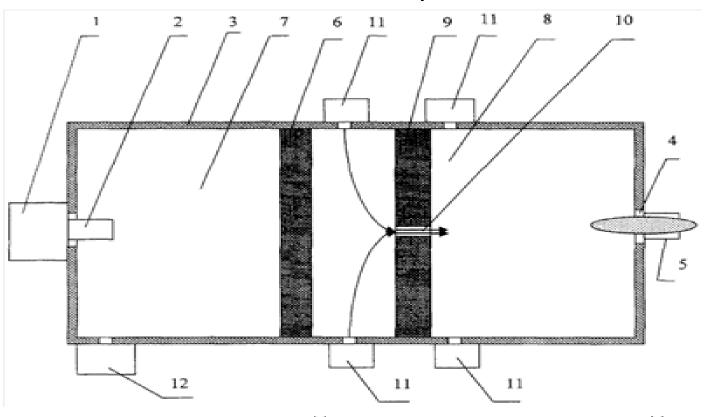

1 – внутренний электрод-катод;
2 – выходной электрод-анод ступенчатой геометрии;
3 –вихревая камера

Схема плазмотрона с секционированной МЭВ



1 — катод; 2 — анод; 3 — подача основного расхода газа G; 4 — секция МЭВ; 5 — узел подачи межсекционного расхода газа gi; 6 — соленоид.

Электродуговой плазмотрон

СВЧ-плазмотрон

1-магнетрон, 2- антенна,3-резонатор, 4- выводное отверстие,5- сопло, 6- перегородка, 7- вводная камера, 8- выводная камера, 9-перегородка, 10- отверстие, 11-средства подачи плазмообразующего газа, 12-средства закачки электроизолирующего газа

Синтез силикат-глыбы

Технические характеристики плазменных горелок

Показатели	ГН-5М	ГН-5Р
1	2	3
Потребляемая	20	35
мощность, кВт		
Максимальный ток, А	500	800
Плазмообразующий	аргон	аргон.гелий, азот,
газ		их смеси
Расход	1-2	2-3
плазмообразующего газа,		
м³/час		
Расход воды на	10	10
охлаждение, л/мин		

Сырьевые материалы

- кварцевый песок марки Б-100-1 по ГОСТ 22551-77;

-сода кальцинированная марки Б по ГОСТ 5100-85;

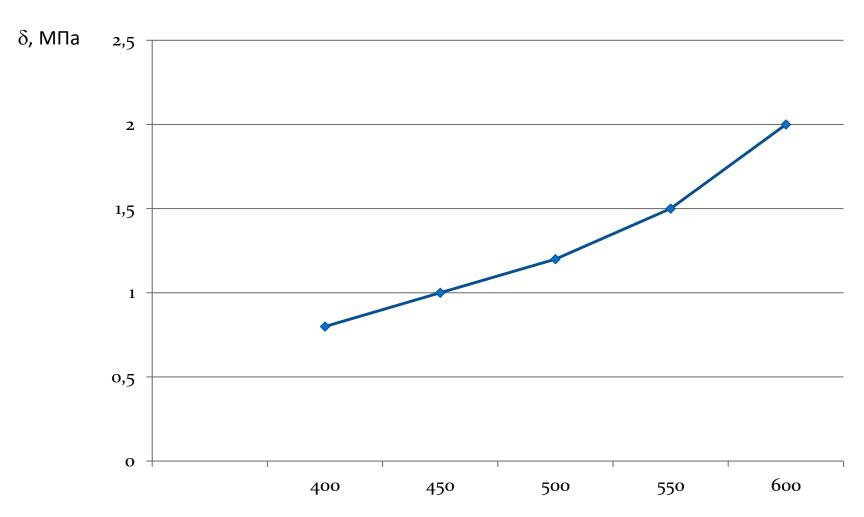
-поташ первого сорта по ГОСТ 10690-73.

Виды силикат-глыбы, регламентируемые нормативными документами

Наименование глыбы	силикатный модуль	Содержание щелочей, %	
Натриевая	2,7-3,0	25,3-27,9	
Калиево-натриевая 75/25	2,85-3,25	28,5-33,2	
Натриево-калиевая 70/30	2,75-3,1	25,9-29,9	
Калиевая	2,65-2,85	28,1-34,4	

Расчетные составы силикатглыбы

	Содержание компонентов, масс. %					
	Na ₂ O	K_2O	SiO_2			
1	26	-	74			
2	8	24	68			
3	19	8	73			
4	-	31	69			


Подготовка исходных шихт для получения силикат-глыбы

Отпрессованные таблетки исследуемых шихт, четырех составов: натриевых, натриево-калиевых, калиево-натриевых, калиевых.

1-первая партия, 2-вторая партия, 3- третья партия, 4- четвертая партия.

Влияние температуры термообработки отходящими плазмообразующими газами на прочность граннулированной шихты

Режимы работы плазмотрона

Nº	Сила тока, А	Напряжение, В	Расход аргона, м ³ /час	Давление газа, МПа	Температу ра, К
1	200				2940
2	250				4235
3	300	30-32		0,25	5869
4	350				7490
5	400		1,8		8650
6	450				10780
7	500				1140
8	550				13542
9	600				14688

Среднемассовая температура факела плазмы на срезе сопла, рассчитанная по уравнению Сага

$$T = \frac{J[U - (U_k + U_{a)}]}{\pi d_c a_c l_a} * (l - e^{\frac{\pi d_c a_c l_a}{c_p \gamma}}),$$

Где Ј- сила тока дуги, А;

U- напряжение дуги, В;

 $U_k + U_a -$ сумма катодного падения напряжения вольфрама и анодного падения напряжения меди в аргоне, $U_k + U_a = 10 \mathrm{B}$

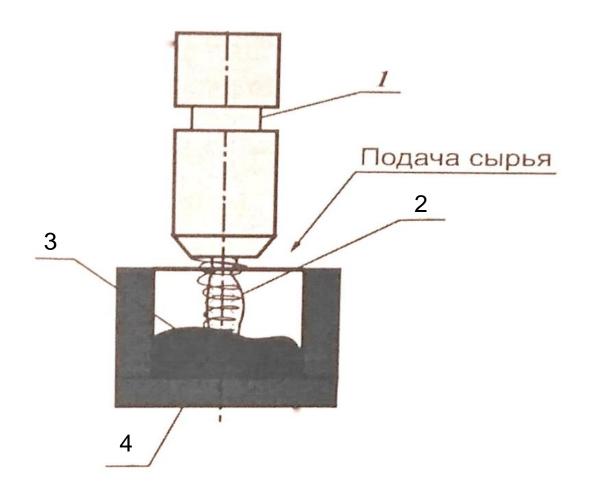
 $\alpha_{\rm c}$ - коээфициент теплообмена между газом и каналом сопла, $\alpha_{\rm c}$ = 8,38*10² ${\rm Bt/m^2*k}$;

 c_p - удельная теплоемкость газа (аргона) в интервале температур 273-10000К; =5,2*10² Дж/кг*к;

γ- расход аргона, равный 1,8м³/час;

 l_{a} длина дуги, м;

d_с диаметр канала сопла, м.


Оптимальные параметры работы плазмотрона

- сила тока 400А;
- напряжение 30-32В;
- расход плазмообразующего газа 1,8м³/час;

Рассчитанная среднемассовая температура плазменного факела:

$$T = \frac{400*(30-10)}{3,14*0,005*8,38*100*0,014} * (1 - e^{\frac{3,14*0,005*8,38*100*0,014}{5,2*100*0,0016}}) = 8650K$$

Синтез силикат-глыбы

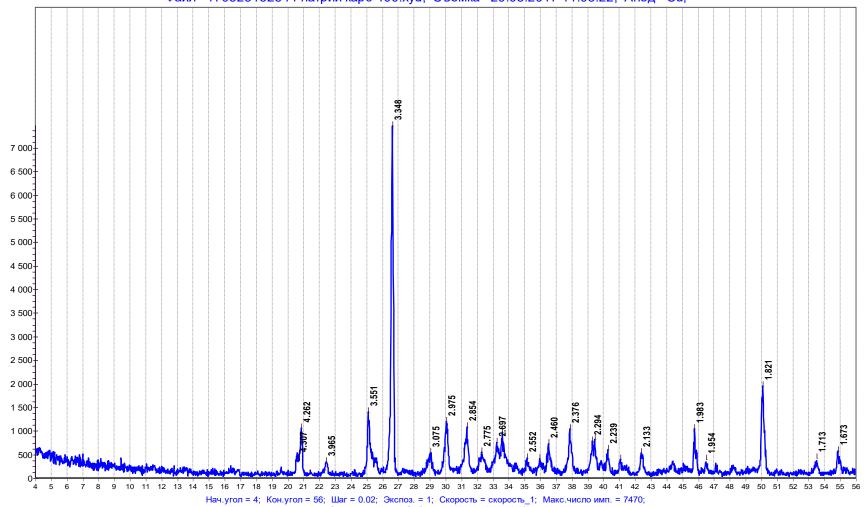
Плазменная горелка, 2- плазменный факел,
силикатный расплав, 4-корпус тигля

Синтезированная силикат-глыба

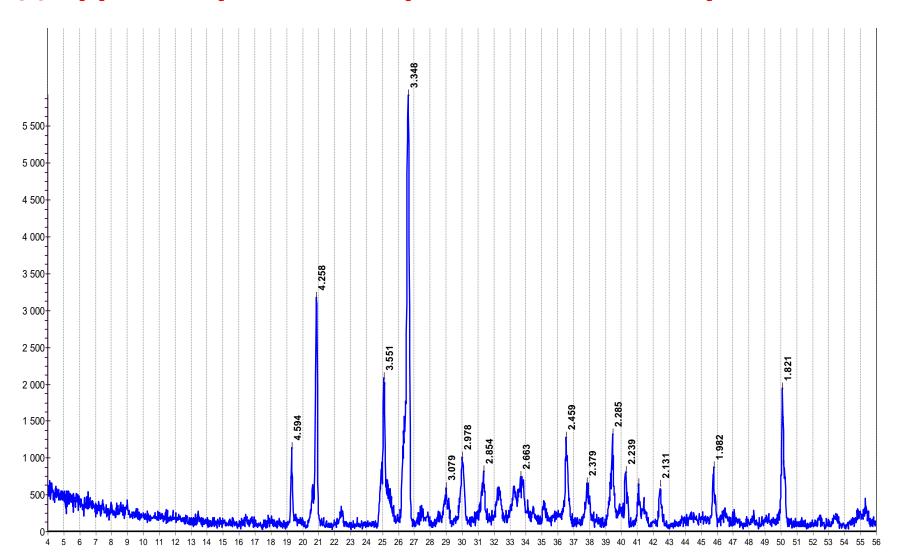
Силика-глыба с 26%Na₂O

Силика-глыба с 19% Na_2O и 8% K_2O

Силика-глыба с 8% Na_2O и 24% K_2O


Силика-глыба с 31% K_2O

Химический состав силикат-глыбы


	Na ₂ O,%	K ₂ O,%	SiO _{2,} %	Fe ₂ O _{3,} %	Al ₂ O ₃ , %	MgO, %
1	27,05	-	71,9	0,0454	0,863	0,146
2	9,0	24,7	65,3	0,0701	0,79	0,129
3	20,2	8,7	70,02	0,062	0,84	0,155
4	-	31,23	67,8	0,0409	0,81	0,121

Порошковая рентгеновская дифрактограмма натриевой шихты при 400°C

Файл - 170523132544 натрий карб 400.хуd; Съемка - 29.05.2017 11:03:22; Анод - Сu;

Порошковая рентгеновская дифрактограмманатриевой шихты при 500°C

Для расчета скорости испарения диоксида кремния использовали уравнение Герца-Ленгмюра:

$$J_{imax} = (2\pi M_i RT)^{1/2} \cdot p_i$$

где J_{imax} -максимальный поток і—го компонента, покидающего поверхность реагирующего вещества, моль/(см $^2\cdot$ с);

М_і- молекулярная масса –го компонента;

R- универсальная газовая постоянная, выраженная в $cm^3 \cdot atm/(K \cdot moль)$;

р_і - парциальное равновесное давление і—го компонента над поверхностью вещества, атм.

Парциальное давление паров p(SiO) мономолекулярного кислорода p(O2) и суммарное давление паров p(SiO2) над диоксидом кремния:

•
$$lgp(SiO) = -27505/T + 8,71$$

•
$$lgp(O_2) = -27809/ + 8,29$$

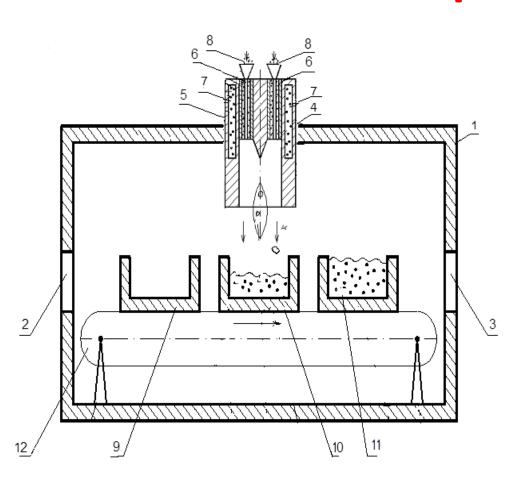
• $\lg \Sigma p(SiO_2) = -27597/ + 8,99$

Парциальное давление монооксида кремния p(SiO)

p(SiO)= exp(
$$(-\frac{\Delta G^{\circ}}{RT}) \cdot (p(O_2))^{1/2}$$

где ΔG° —стандартное изменение энергии Гиббса реакции инконгруентного испарения.

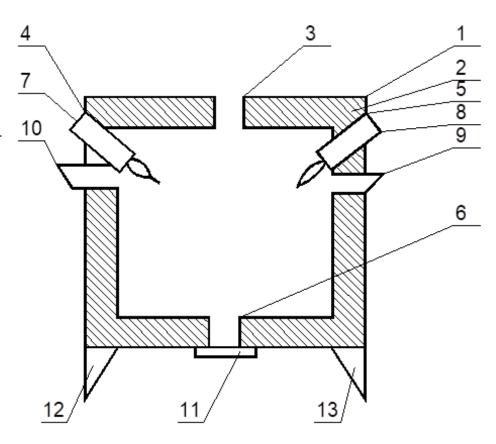
Скорость испарения монооксида кремния, молекулярного кислорода и диоксида кремния


• Применяемая формула:

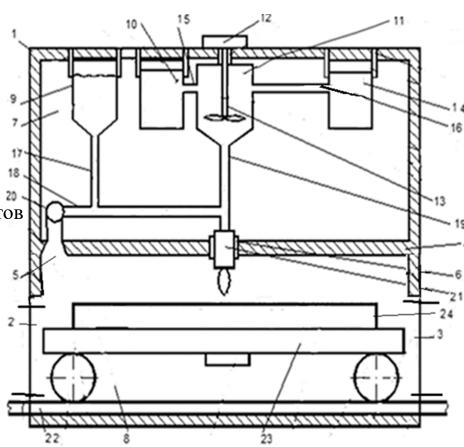
$$J(SiO_2)=[1596\cdot 10^5/T^{1/2}]\cdot M(SiO_2)\cdot (\exp((-\frac{\Delta G^\circ}{RT})/M(SiO))^{1/2}\cdot (10\cdot p(O_2))^{1/2}$$
 где $J(SiO_2)-$ минимальный поток SiO_2 , выраженный через массу оксида кремния, г/(см²·ч); $M(SiO_2)$ и $M(SiO)-$ молекулярные массы оксидов; $p(O_2)-$ парциальное давление кислорода, $M\Pi$ а.

Давление паров и скорости испарения монооксида кремния, молекулярного кислорода и диоксида кремния

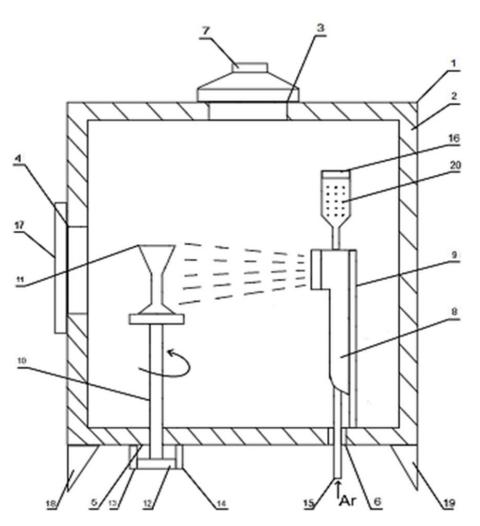
Nº	_	Значение показателей при температурах				
п/п	Показатель	1600	1800	1900	2000	
	Давление пара,					
	10 ⁻³ ,∏a	83,42	197,3	201,3	237,8	
1	Σ p(SiO $_2$)	57,13	175,8	184,3	208,3	
2	p(SiO)	1,48	29,4	30,1	36,8	
3	p(O ₂)					
4	Скорость					
	испарения J					
	кг/(м²·с)	420,78·10 ⁻¹⁰	568,37·10 ⁻¹⁰	781,73·10 ⁻¹⁰	830,01·10 ⁻¹⁰	
	J(SiO ₂) при p(O ₂)					
	н.у					


Синтез теплоизоляционных материалов

Корпус 1; Проемы 2, 3 и 4; Плазменный реактор 5; Кварцевые трубопроводы 6; Водоохлаждаемая рубашка 7; Порошковый питатель 8; Металлические формы 9, 10,11; Пластинчатый конвейер 12.


Плазменная печь для варки цветных стекол

- 1. Корпус стекловаренной печи;
- 2. Футеровка печи бадделеитокорундового огнеупора;
- 3. Вытяжная вентиляция для отвода отходящих плазмообразующих газов;
- 4,5. Проемы для плазменных горелок;
- 6. Отверстие в поде печи для слива расплава и его выработки;
- 7, 8. Плазменные горелки;
- 9, 10. загрузочные карманы
- 11. Затвор;
- 12, 13. Опорные ножки.



Плазменное глазурование стеновых строительных материалов

- 1 корпус
- 2 входной проем
- 3 выходной проем
- 4 разделительная горизонтальная перегородка
- 5-8 отверстие на 2 камеры
- 9 бункер для металлического порошка
- 10 бункер для жидкого стекла
- 11 бункер для смешения и увлажнения компонентов гранулированного вещества
- 12 электропривод
- 13 пропеллерная мешалка
- 14 бункер для гранул глиноземистого цемента
- 15-19 трубопровод
- 20 вентилятор
- 21 плазмотрон
- 22 платформа
- 23 электроприводная тележка
- 24 бетонная панель

Плазменное декорирование стеклоизделий

1 – корпус

2 – футерованный огнеупор

3-6 – проемы

7 – вытяжная вентиляция

8 – плазменная горелка

9 – кронштейн

10 – турнетка

11- изделие

12 – электропровод

13,14 – кронштейн

15 – трубопровод

16 – порошковый питатель

17 – затвор

18,19 – опорные ножки

Спасибо за внимание!

Контактные данные:

профессор Бессмертный Василий Степанович

тел.: 8-908-788-22-23

e-mail: vbessmertnyi@mail.ru